Structural Analysis of G-Quadruplex Formation at the Human MEST Promoter

نویسندگان

  • Aaron J Stevens
  • Martin A Kennedy
چکیده

The promoter region of the imprinted gene MEST contains several motifs capable of forming G-quadruplex (G4) structures, which appear to contribute to consistent allelic dropout during polymerase chain reaction (PCR) analysis of this region. Here, we extend our previous analysis of MEST G4 structures by applying fluorescent footprinting techniques to assess non B-DNA structure and topology in dsDNA from the full MEST promoter region, under conditions that mimic PCR. We demonstrate that the buffer used for PCR provides an extremely favourable milieu for G4 formation, and that cytosine methylation helps maintain G4 structures during PCR. Additionally, we demonstrate G4 formation at motifs not previously identified through bioinformatic analysis of the MEST promoter, and provide nucleotide level resolution for topological reconstruction of these structures. These observations increase our understanding of the mechanisms through which methylation and G4 contribute towards allelic drop-out during PCR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico screening of G-Quadruplex Structures in Wilms tumor 1 Gene Promoter

Introduction: X-ray diffraction studies have revealed that guanines in a DNA stands may be arranged in quartet and form a structure called G-quadruplexs. Bioinformatics studies suggested the formation of G-quadruplex structure in human crucial genes, including Wilms tumor 1 (WT1). The aim of this study was to in silico analysis of the guanine-rich sequence in the promoter region of the WT1 gene...

متن کامل

Correction: G-Quadruplex Structures and CpG Methylation Cause Drop-Out of the Maternal Allele in Polymerase Chain Reaction Amplification of the Imprinted MEST Gene Promoter

We observed apparent non-Mendelian behaviour of alleles when genotyping a region in a CpG island at the 5' end of the maternally imprinted human MEST isoform. This region contains three single nucleotide polymorphisms (SNPs) in total linkage disequilibrium, such that only two haplotypes occur in the human population. Only one haplotype was detectable in each subject, never both, despite the use...

متن کامل

Allelic Dropout During Polymerase Chain Reaction due to G-Quadruplex Structures and DNA Methylation Is Widespread at Imprinted Human Loci

Loss of one allele during polymerase chain reaction (PCR) amplification of DNA, known as allelic dropout, can be caused by a variety of mechanisms. Allelic dropout during PCR may have profound implications for molecular diagnostic and research procedures that depend on PCR and assume biallelic amplification has occurred. Complete allelic dropout due to the combined effects of cytosine methylati...

متن کامل

Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents

The proximal promoter region of the human vascular endothelial growth factor (VEGF) gene contains a polypurine/polypyrimidine tract that serves as a multiple binding site for Sp1 and Egr-1 transcription factors. This tract contains a guanine-rich sequence consisting of four runs of three or more contiguous guanines separated by one or more bases, corresponding to a general motif for the formati...

متن کامل

Stabilization of G-quadruplex in the BCL2 promoter region in double-stranded DNA by invading short PNAs

Numerous regulatory genes have G-rich regions that can potentially form quadruplex structures, possibly playing a role in transcription regulation. We studied a G-rich sequence in the BCL2 gene 176-bp upstream of the P1 promoter for G-quadruplex formation. Using circular dichroism (CD), thermal denaturation and dimethyl sulfate (DMS) footprinting, we found that a single-stranded oligonucleotide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017